Power Electronics

MINISTART Smart Motorstarter UG 9411

Product Description

The smart motorstarter UG 9411 can be used for softstart, softstop, reversing and protecting 1 phase asynchronous motors. By measuring the line current a thermal model is used to calculate the motor temperature, and in the case of overtemperature the motor is disconnected. In addition also a thermo switch can be used. The reversing is done via relays. The relays are switched without current flow, this provides long service life.

Function Diagram

Your Advantages

- up to 6 functions in one device
 - Reversing anticlockwise,
 - Reversing clockwise
- Softstart
- Softstop
- Motor protection
- Phase failure monitoring
- Widely used measuring and automation protocol
- 80 % less space
- · Simple and time-saving commissioning as well as user-friendly
- operation through parameterization via modbus
- Blocking protection
- Hybrid relay combines benefits of relay technology with non-wearing semiconductor technology
- High availablility by
 - Temperature monitoring of semiconductors
 - High withstand voltage up to 1500 V
 - Load free relay reversing function
- Device overload

Features

- According to IEC/EN 60 947-4-2
- Modbus RTU-interface
- To reverse 1-phase motors up to 50 ... 180 W or
- 180 W ... 1.1 kW at 230 V
- 1-phase softstart, softstop
- · 3 potentiometer for setting the modbus adress and baud rate
- 5 LEDs for status indication
- Reversing with relays without current, softstart, softstop with thyristor
- Galvanic separation between control circuit and power circuit
- Width: 22.5 mm

Approvals and Markings

Applications

- Reversing operation for door and gate controls, bridge drives and lifting applications with monitoring of blockage
- Conveyor systems with monitoring of blockage
- Actuating drives in process controls with blockage monitoring

Circuit Diagram

Connection Terminals						
Signal designation						
Auxiliary voltage + DC 24 V						
Auxiliary voltage 0 V						
Modbus signal A						
Modbus signal B						
Phase connection L						
Neutral						
Motor connection T1						
Motor connection T2						
Motor connection T3						

Function

Softstart

The motor phase is controlled using thyristors, so that the motor current rises continuously. The starting torque behaves in the same way. This provides shock free starting and reduces mechanical failures. Starting timeand starting voltage can be adjusted via Modbus.

Softstop

The motor phases is controlled using thyristors, so that the motor current drops continuously. The motor torque behaves in the same way on run down. This provides shock free stopping and reduces mechanical failures. Stopping time and stopping voltage can be adjusted via Modbus.

Motorschutz

Motor protection

The thermal load of the motor is calculated using a thermal model. The current is measured in phase N. When the trigger value – stored in the trigger characteristics-, is reached, the motor is switched off and the device switches to fault 8.

The fault and motor leading can be acknowledged via Modbus.

Attention: The data of the thermal model is cleared through reset. In this case, the user must provide adequate cooling time of the motor.

Phase failure monitoring

After connecting the auxiliary supply, the unit checks if the phases L / N is correct. If L or L / N phases are missing, the unit indicates fault 4. This fault can be reset via Modbus.

Indicators		
green LED "On":	permanent on	- supply connected
red LED "ERR":	flashing	- Failure code of the device
yellow LED "Bus"	: flashing	 When receiving or transmitting Modbus data
yellow LED "L":	permanent on flashing	 Motor turns anti-clockwise softstart or softstop active on anti-clockwise turn
yellow LED "R":	permanent on flashing	 Motor turns clockwise softstart or softstop active on clockwise turn
Failure code :	1 - Overter 2 - Wrong f 4 - Phase f 7 - Incorrec 8 - Motor p 9 - Modubu 10 - Checks	nperature on semiconductors mains freqency failure detected ct temperature measurement circuit protection has responded us communication failure um failure EEprom

 $1^{\star} - 10^{\star} =$ Number of flashing pulses in sequence

Reset Function

By sending a reset command a reset can be operated via Modbus

Modbus RTU

For communication between motor controller and a supervising control the Modbus RTU protocol is used.

Modbus RRTU according to Modbus Application Protocol Specification V 1.1b3.

Setting

Position Potentio- meter BAUD	1	2	3	4	5	6	7	8
Baud- rate Baud	1200	2400	4800	9600	19200	38400	57600	115200

Technical Data

Nominal voltage L1/N: Nominal frequency: Auxiliary voltage: Motor power:

	0.3 A 2.0 A adjustable via Modbus				
Operating mode:					
7.0 A:	AC 53a: 4-2: 100-30	IEC/EN 60947-4-2			
2.0 A:	AC 53a: 4-2: 100-30	IEC/EN 60947-4-2			
Measured nominal current:	7.0 A; 2.0 A				
Surge current:	200 A (tp = 20 ms)				
Load limit integral:	$200 \text{ A}^2 \text{s}$ (tp = 10 ms)			
Peak reverse voltage:	1500 V				
Overvoltage limiting:	AC 510 V				
Leakage current in off state:	< 0.5 mA				
Start / deceleration voltage:	30 80 % adjustable	e via Modbus			
Start / deceleration ramp:	0 10 s adjustable v	ia Modbus			
Consumption:	2 W				
Switchover delay time:	500 ms dependent of	l e			
Switchover delay time:	150 ms	5			
Start up delay for master tick:	min. 25 ms				
Release delay for master tick:	min. 30 ms				
Current measurement:					
7 A device:	AC 0.5 25 A				
2 A device:	AC 0.2 10 A				
Measuring accuracy:	\pm 5% of end of scale	value			
Measured value update time					
at 50 Hz:	100 ms				
at 60 Hz:	83 ms				
Motor protection					
up to 6.9 A:	Class 10 A				
6.9 to 7.0 A	Class 5				
Electronically, with thermal men	nory				
Reset:	manual via Modbus				
Short circuit strength					
max. fuse rating:	25 A gG / gL	IEC/EN 60 947-5-1			

AC 230 V $\pm 10\%$

DC 24 V ± 10%

50 / 60 Hz , automatic detection

1.5 A ... 7.0 adjustable via Modbus

General Data

Operating mode:	Continuous operation			
Operation:	0 + 65 °C (see derating curve)			
Storage:	- 40 + 70 °C			
Relative air humidity:	93 % at 40 °C			
Altitude:	< 1.000 m			
Clearance and creepage				
distances				
rated impuls voltage /				
pollution degree				
Motor voltage- control voltage:	6 kV / 2	IEC 60 664-1		
Motor voltage- Modbus:	6 kV / 2	IEC 60 664-1		
Overvoltage category:	111			
EMC				
Electrostatic discharge:	8 kV (air)	IEC/EN 61 000-4-2		
HF-irradiation				
80 MHz 1.0 GHz:	10 V / m	IEC/EN 61 000-4-3		
1.0 GHz 2.5 GHz:	3 V / m	IEC/EN 61 000-4-3		
2.5 GHz 2.7 GHz:	1 V / m	IEC/EN 61 000-4-3		
Fast transients:	2 kV	IEC/EN 61 000-4-4		
Surge voltages				
between				
wires for power supply:	1 kV	IEC/EN 61 000-4-5		
between wire and ground:	2 kV	IEC/EN 61 000-4-5		
HF wire guided:	10 V	IEC/EN 61 000-4-6		
Voltage dips		IEC/EN 61 000-4-11		
Interference emission				
Wire guided:	Limit value class B	IEC/EN 60 947-4-2		
Radio irradiation:	Limit value class B	IEC/EN 60 947-4-2		
Harmonics:		EN 61 000-3-2		
Degree of protection:				
Housing:	IP 40	IEC/EN 60 529		
Terminals:	IP 20	IEC/EN 60 529		
Vibration resistance:	Amplitude 0,35 mm			
	Frequency 10 55 H	Iz, IEC/EN 60 068-2-6		
Climate resistance:	0 / 065 / 04	IEC/EN 60 068-1		

Technical Data

Wire connection: DIN 46 228-1/-2/-3/-4 **Removable terminal blocks** Wire connection Phase voltage and motor $0.25 \ ... \ 2.5 \ mm^2$ solid or $0.25 \ ... \ 2.5 \ mm^2$ stranded ferruled pluggable screw terminal (S): Wire connection: Bus and auxiliary supply pluggable Twin-cage-clamp-terminal (PT): 0.25 ... 1.5 mm² solid or 0.25 ... 1.5 mm² stranded ferruled Insulation of wires or sleeve length: 8 mm 0.5 ... 0.6 Nm DIN rail Fixing torque: Mounting: IEC/EN 60 715 Weight: 220 g Dimensions Width x height x depth: 22.5 x 105 x 120.3 mm **Standard Types** UG 9411PM AC 230 V 50/60 Hz 7.0 A Article number: 0067523 AC 230 V Nominal voltage: • Nominal motor current: 7.0 A Modbus RTU

Adjustable baud rateWidth:	22.5 mm
UG 9411PM AC 230 V 50 Article number: • Nominal voltage: • Nominal motor current: • Modbus RTU • Adjustable baud rate	0/60 Hz 2.0 A 0067522 AC 230 V 2.0 A

• Width: 22.5 mm

Derating curve:

Rated continuous current depending on ambient temperature and distance Enclosure without ventilation slots

Setting Facilities

Potentiometer ADR10:	- Unit adress x 10
Potentiometer ADR1:	- Unit adress x 1
Potentiometer BAUD:	- Baud rate

The module address and baud rate is only read after connecting the auxiliary supply!

Group fusing

Several motor starters can be wired in parallel on the supply side. Please make sure, that the total current cannot exceed 16 A. If several starters are use together and require more than 16 A, groups have to be split up for max 16 A.

Set-up Procedure

- 1. Connect motor and device according to application example. The 3 phases must be connected in correct sequence, wrong phase sequence will lead to failure (see failure code)
- 2. Setting unit adress and baud rate via potentiometer.
- Power up the unit. З.
- Parametrization via Modbus 4
- 5. At correct setting, the motor should ramp up continuously to full speed.

Safety Notes

- Never clear a fault when the device is switched on

Attention: This device can be started directly on the phase voltage

without a contactor. Please be aware that the motor is still connected to the supply voltage also when it is not running. Therefore for work on motor and controller the supply has to be disconnected via E-stop.

- The user must ensure that the device and the necessary component are mounted and connected according to the locally applicable regulations and technical standards (VDE, TÜV, BG).
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.
- Touch proof security is only provided when the power connection terminals are plugged into the unit.

Motor control with UG 9411 and PLC via Modbus

Bus Interface

ProtokollModbus Seriell RTUAdress1 bis 99Baud rate1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 BaudData bit8Stop bit2Paritynone

More information about the interface, wiring rules, device identification and communication monitoring can be found in the Modbus user manual.

Function-Codes

At UG 9411 the following function codes are implemented:

Function- Code	Name	Description
0x03	Read Holding Register	Device parameter read word by word
0x04	Read Input Register	Actual values read word by word
0x05	Write Single Coil	Outputs write induvidually
0x06	Write Single Register	Device parameter write word by word
0x10	Write Multiple Register	Device parameter write in blocks

Parameter table

Every slave owns an output- configuration- and actual value table. In these tables it is defined under which address the parameters can be found.

Single Coils (Control signals):

Register- Adress	Protocol- Adress	Name	Value range	Description	Data type	Access rights
1	0	RunRight	0x0000 0xFF00	Motor turns right off Motor turns right on	ВІТ	write
2	1	RunLeft	0x0000 0xFF00	Motor turns left off Motor turns left on	ВІТ	write
3	2	Reset	0x0000 0xFF00	No function Device reset	ВІТ	write
4	3	WriteKonfig	0x0000 0xFF00	No function Save parameter	BIT	write

Holding Register (Device configuration):

Register- Adress	Protocol- Adress	Name	Value range	Description	Data type	Access rights
40001	0	Control word 1	0 2	Bit 0 = Reset Bit 1 = WriteKonfig	UINT16	write / reading
40002	1	Control word 2	02	Bit 0 = RunRight Bit 1 = RunLeft	UINT16	write / reading
40003	2	le	30 200 150700	Nominal motor current in 1/100 A	UINT16	write / reading
40004	3	Mon	30 80	Softstart voltage in % from nominal voltage	UINT16	write / reading
40005	4	Ton	0 100	Softstart ramp time in 1/10 Sec	UINT16	write / reading
40006	5	Moff	80 30	Softstop voltage in % from nominal voltage	UINT16	write / reading
40007	6	Toff	0 100	Softstop ramp time in 1/10 sec	UINT16	write / reading
40008	7	Timeout release	0 1	0 = Disable 1 = Enable	UINT16	write / reading
40009	8	Timeout	010000	Timeout value in ms	UINT16	write / reading

Input Register (Device state and measuring values):

Register- Adress	Protocol- Adress	Name	Value range	Description	Data type	Access rights
30001	0	State word 1 Device failure	0 10	0: No failure 1: Overtemperature LT 2: Wrong freqency 3: Phase reversal 4: Phase failure 5: Motor blocked 6: 7: Temperatur circuit fault 8: Motor protection device actuated 9: Communication fault Modbus 10: Checksum failure EEprom	UINT16	reading
30002	1	State word 2 State of device	0 6	0: Device initialize 1: Wait for start 2: Softstart ramp 3: Clockwise On 4: Anti-clockwise On 5: Softstop ramp 6: Device in errormode	UINT16	reading
30003	2	Actual motor current	0 3000	Actual motor current in 1/100 A	UINT16	reading
30004	3	Motor load	0 100	Motor load in % from rated motor power	UINT16	reading

E. DOLD & SÖHNE KG • D-78114 Furtwangen • PO Box 1251 • Telephone (+49) 77 23 / 654 - 0 • Telefax (+49) 77 23 / 654 - 356